

Order

Now

TS5A22364

SCDS261H-MARCH 2008-REVISED JUNE 2017

TS5A22364 0.65- Ω Dual SPDT Analog Switches With Negative Signaling Capability

1 Features

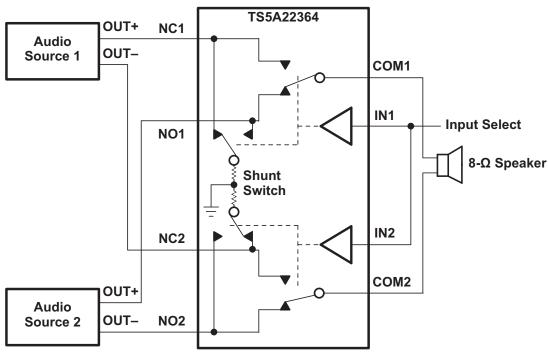
Texas

INSTRUMENTS

- Specified Break-Before-Make Switching
- Negative Signaling Capability: Maximum Swing from -2.75 V to 2.75 V (V_{CC} = 2.75 V)
- Internal Shunt Switch Prevents Audible Click-and-Pop When Switching Between Two Sources
- Low ON-State Resistance (0.65 Ω Typical)
- Low Charge Injection
- **Excellent ON-State Resistance Matching**
- 2.3-V to 5.5-V Power Supply (V_{CC})
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2500-V Human-Body Model (A114-B, Class II)
 - 1500-V Charged-Device Model (C101)
 - 200-V Machine Model (A115-A)

Applications 2

- **Cell Phones**
- **PDAs**
- Portable Instrumentation
- Audio Routing
- Medical Imaging


3 Description

The TS5A22364 is a bidirectional, 2-channel, singlepole double-throw (SPDT) analog switch designed to operate from 2.3 V to 5.5 V. The device features negative signal capability that allows signals below ground to pass through the switch without distortion. Additionally, the TS5A22364 includes an internal shunt switch, which automatically discharges any capacitance at the NC or NO terminals when they are unconnected to COM. This reduces the audible click/pop noise when switching between two sources. The break-before-make feature prevents signal distortion during the transferring of a signal from one path to another. Low ON-state resistance, excellent channel-to-channel ON-state resistance matching, minimal total harmonic distortion (THD) and performance are ideal for audio applications. The 3.00-mm x 3.00-mm DRC package is also available as a nonmagnetic package for medical imaging applications.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TS5A22364	VSON (10)	3.00 mm × 3.00 mm
	DSBGA (10)	1.90 mm × 1.40 mm
	VSSOP (10)	3.00 mm × 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Schematic

TEXAS INSTRUMENTS

www.ti.com

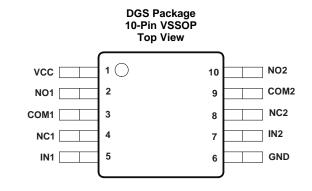
Table of Contents

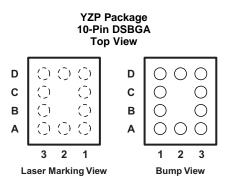
1	Feat	tures 1
2	Арр	lications 1
3	Des	cription1
4	Rev	ision History 2
5	Pin	Configuration and Functions
6	Spe	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 5
	6.5	Electrical Characteristics for 2.5-V Supply 5
	6.6	Electrical Characteristics for 3.3-V Supply 6
	6.7	Electrical Characteristics for 5-V Supply
	6.8	Typical Characteristics 9
7	Para	ameter Measurement Information 11
8	Deta	ailed Description 15
	8.1	Overview

	8.2	Functional Block Diagram 1	5
	8.3	Feature Description 1	
	8.4	Device Functional Modes1	
9	App	lication and Implementation1	
	9.1	Application Information 1	7
	9.2	Typical Application 1	7
10		ver Supply Recommendations 1	
11	Lay	out1	9
	11.1	Layout Guidelines1	9
	11.2	Layout Example 1	9
12	Dev	ice and Documentation Support 2	20
	12.1	Receiving Notification of Documentation Updates 2	20
	12.2	Community Resources 2	20
	12.3	Trademarks 2	20
	12.4	Electrostatic Discharge Caution 2	20
	12.5	Glossary	20
13	Mec	hanical, Packaging, and Orderable	
		rmation 2	20


4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


C	hanges from Revision G (September 2015) to Revision H	Page
•	Changed the V _{IN} MAX value From: V _{CC} To: 5.5 V in the <i>Recommended Operating Conditions</i> table	4
C	hanges from Revision F (June 2015) to Revision G	Page
•	Changed C _L TEST CONDITION value for all THD PARAMETERs from 15 pf to 35 pf	7
C	hanges from Revision E (May 2013) to Revision F	Page
•	Added Pin Configuration and Functions section, ESD Ratings table, Recommended Operating Conditions table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1
•	Split the TS5A22364 and TS5A22362 into separate datasheets and added verbiage to clarify the operation of the shunt resistor.	1
•	Changed the max $\rm R_{on}$ spec from 1.04 Ω to 1.30 Ω at 2.7 V $\rm V_{CC}$ across full $\rm T_{A^{.}}$	5
C	hanges from Revision D (November 2011) to Revision E	Page
•	Added Absolute Maximum Ratings textnote	4
C	hanges from Revision C (April 2010) to Revision D	Page
•	Added Medical Imaging to Applications	1



5 Pin Configuration and Functions

*The exposed center pad, if used, must be connected as a secondary GND or left electrically open.

Pin Functions

PIN		TYPE	DESCRIPTION			
NAME	DRC / DGS	YZP	TIPE	DESCRIPTION		
VCC	1	A2	_	Power Supply		
NO1	2	A3	I/O	Normally Open (NO) signal path, Switch 1		
COM1	3	B3	I/O	Common signal path, Switch 1		
NC1	4	C3	I/O	Normally Closed (NC) signal path, Switch 1		
IN1	5	D3	I	Digital control pin to connect COM1 to NO1, Switch 1		
GND	6	D2	—	Ground		
IN2	7	D1	I	Digital control pin to connect COM2 to NO2, Switch 2		
NC2	8	C1	I/O	Normally Closed (NC) signal path, Switch 2		
COM2	9	B1	I/O	Common signal path, Switch 2		
NO2	10	A1	I/O	Normally Open (NO) signal Path, Switch 2		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1) (2)

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽³⁾		-0.5	6	V
V _{NC} V _{NO} V _{COM}	Analog voltage (3) (4) (5)		$V_{CC} - 6$	V _{CC} + 0.5	V
I _{I/OK}	Analog port diode current	$ \begin{array}{c} V_{NC}, V_{NO}, V_{COM} < 0 \\ \text{or} \\ V_{NC}, V_{NO}, V_{COM} > V_{CC} \end{array} $	-50	50	mA
I _{NO}	ON-state switch current		-150	150	
I _{NO} I _{COM}	ON-state peak switch current ⁽⁶⁾	V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{CC}	-300	300	mA
I _{RSH}	OFF-state switch Shunt Resistor current		-20	20	
I _{COM} 0 I _{RSH} 0	ON-state switch current		-350	350	
I _{NO} ⁽³⁾ ⁽⁷⁾ ⁽⁸⁾ I _{COM} ⁽³⁾ ⁽⁷⁾ ⁽⁸⁾	ON-state peak switch current ⁽⁶⁾	V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{CC}	-500	500	mA
V _{IN}	Digital input voltage range		-0.5	6.5	V
I _{IK}	Digital input clamp current ⁽³⁾ ⁽⁴⁾	V ₁ < 0	-50	50	mA
I _{CC} I _{GND}	Continuous current through V _{CC} or GND		-100	100	mA
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

(3) All voltages are with respect to ground, unless otherwise specified.

(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(5) This value is limited to 5.5 V maximum.

(6) Pulse at 1-ms duration < 10% duty cycle.

(7) $V_{CC} = 3.0 \text{ V to } 5.0 \text{ V}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}.$

(8) For YZP package only.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $\stackrel{(2)}{}$	±1500	V

 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Supply voltage	2.3	5.5	V
V _{NC} V _{NO} V _{COM}	Signal path voltage	V _{CC} – 5.5	V _{CC}	V
V _{IN}	Digital control	GND	5.5	V

6.4 Thermal Information

			TS5A22364		
	THERMAL METRIC ⁽¹⁾	DGS (VSSOP)	DRC (VSON)	YZP (DSBGA)	UNIT
		10 PINS	10 PINS	10 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	163.3	44.3	90.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	56.4	70.1	0.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	83.1	19.3	8.3	°C/W
ΨJT	Junction-to-top characterization parameter	6.8	2.0	3.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	81.8	19.4	8.3	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	6.2	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics for 2.5-V Supply

 V_{CC} = 2.3 V to 2.7 V, T_{A} = –40°C to 85°C (unless otherwise noted) $^{(1)}$

P	ARAMETER	TEST CO	NDITIONS	T _A	V _{cc}	MIN	ТҮР	MAX	UNIT
ANALOG S	WITCH								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					V _{CC} – 5.5		V _{CC}	V
				25°C	2.3 V		0.65	0.94	Ω
D	ON-state	V_{NC} or $V_{NO} = V_{CC}$, 1.5 V, $V_{CC} = 5.5$ V	COM to NO or NC,	Full	2.3 V			1.3	Ω
R _{on}	resistance	$V_{CC} = 5.5 V$ $I_{COM} = -100 \text{ mA},$	see Figure 13	25°C	2.7 V		0.65	0.94	Ω
				Full	2.1 V			1.3	32
4.0	ON-state	V_{NC} or $V_{NO} = 1.5 V_{,}$	COM to NO or NC,	25°C	071	(0.023	0.11	0
ΔR_{on}	resistance match between channels	$I_{COM} = -100 \text{ mA},$	see Figure 13	Full	2.7 V		0.15		Ω
_	ON-state	V_{NC} or $V_{NO} = V_{CC}$, 1.5 V,	COM to NO or NC.	25°C			0.18	0.46	_
R _{on(flat)}	resistance flatness	V _{CC} – 5.5 V I _{COM} = –100 mA,	see Figure 13	Full	2.7 V			0.5	Ω
R _{SH}	Shunt switch resistance	I_{NO} or I_{NC} = 10 mA		Full	2.7 V		25	50	Ω
	СОМ	V_{NC} and V_{NO} = Floating,		25°C		-50		50	
I _{COM(ON)}	ON leakage current	$V_{\rm COM} = V_{\rm CC}, V_{\rm CC} - 5.5 \text{ V},$	See Figure 15	Full	2.7 V	-375		375	nA
DIGITAL C	ONTROL INPUTS (IN)	(2)							
V _{IH}	Input logic high			Full		1.4		5.5	V
VIL	Input logic low			Fuil				0.4	v
	Input leakage	$V_{IN} = V_{CC}$ or 0		25°C	2.7 V	-250		250	nA
I _{IH} , I _{IL}	current			Full	2.7 V	-250		250	114

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

(2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Floating digital inputs will cause excessive current consumption. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, SCBA004.

Electrical Characteristics for 2.5-V Supply (continued)

F	PARAMETER	TEST CON	DITIONS	TA	V _{cc}	MIN	ТҮР	MAX	UNIT
DYNAMIC		1							
			0 05 5	25°C	2.5 V		44	80	
t _{ON}	Turnon time	$V_{\text{COM}} = V_{\text{CC}},$ $R_{\text{L}} = 300 \ \Omega,$	C _L = 35 pF, see Figure 17	Full	2.3 V to 2.7 V			120	ns
			0 05 - 5	25°C	2.5 V		22	70	
t _{OFF}	Turnoff time	$V_{\text{COM}} = V_{\text{CC}},$ $R_{\text{L}} = 300 \ \Omega,$	C _L = 35 pF, see Figure 17	Full	2.3 V to 2.7 V			70	ns
t _{BBM}	Break-before-make time	See Figure 18		25°C	2.5 V	1	7		ns
Q _C	Charge injection	$V_{GEN} = 0, R_{GEN} = 0$	$C_L = 1 \text{ nF}$, see Figure 22	25°C	2.5 V		215		рС
C _{COM(ON)}	NC, NO, COM ON capacitance	$V_{COM} = V_{CC}$ or GND, Switch ON, f = 10 MHz	See Figure 16	25°C	2.5 V		370		pF
CI	Digital input capacitance	$V_{IN} = V_{CC}$ or GND	See Figure 16	25°C	2.5 V		2.6		pF
BW	Bandwidth	$R_L = 50 \Omega, -3 dB$		25°C	2.5 V		17		MHz
O _{ISO}	OFF isolation	R _L = 50 Ω	f = 100 kHz, see Figure 20	25°C	2.5 V		-66		dB
X _{TALK}	Crosstalk	R _L = 50 Ω	f = 100 kHz, see Figure 21	25°C	2.5 V		-75		dB
THD	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 35 \text{ pF},$	f = 20 Hz to 20 kHz, see Figure 23	25°C	2.5 V		0.01%		
SUPPLY									
		V_{COM} and $V_{IN} = V_{CC}$ or GND,		25°C	0.71/		0.2	1.1	
	Positive	V_{NC} and V_{NO} = Floating		Full	2.7 V			1.3	μA
I _{CC}	supply current	$\label{eq:V_COM} \begin{split} & V_{COM} = V_{CC} - 5.5, \\ & V_{IN} = V_{CC} \text{ or GND}, \\ & V_{NC} \text{ and } V_{NO} = \text{Floating} \end{split}$		Full	2.7 V			3.3	μΑ

6.6 Electrical Characteristics for 3.3-V Supply

 $V_{CC} = 3 \text{ V}$ to 3.6 V, $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted) ⁽¹⁾

PARAMETER		TEST CON	DITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT	
ANALOG S	SWITCH		- U							
V _{COM} , V _{NO} , V _{NC}	Analog signal range					V _{CC} – 5.5		V _{cc}	V	
D	ON-state	V_{NC} or $V_{NO} \le V_{CC}$, 1.5 V,	COM to NO or NC,	25°C	3 V		0.61	0.87	Ω	
R _{on}	resistance	V _{CC} – 5.5 V, I _{COM} = –100 mA,	see Figure 13	Full	3 V			0.97	Ω	
	ON-state resistance match	V_{NC} or $V_{NO} = 1.5 V$,	= 1.5 V, COM to NO or NC, 25°C	3 V		0.024	0.13	Ω		
ΔR_{on}	between channels	Sistance match $I_{\text{pow}} = -100 \text{ mA}$ see Figure 13		Full	3 V			0.13	12	
2	ON-state	V_{NC} or $V_{NO} \le V_{CC}$, 1.5 V,	COM to NO or NC,	25°C			0.12	0.46	0	
R _{on(flat)}		V _{CC} – 5.5 V, I _{COM} = –100 mA,	see Figure 13	Full	3 V			0.5	Ω	
R _{SH}	Shunt switch resistance	$I_{\rm NO}$ or $I_{\rm NC}$ = 10 mA		Full	3 V		25	37	Ω	
	COM	Vue and Vue – Open	COM to NO or NC,	25°C	0.014	-50		50		
I _{COM(ON)}	ON leakage current	$V_{\rm COM} = V_{\rm CC}, V_{\rm CC} - 5.5 \rm V,$	see Figure 15	Full	3.6 V	-375		375	nA	
DIGITAL C	ONTROL INPUTS (IN) (2)			·				·		
V _{IH}	Input logic high			Full		1.4		5.5	V	
VIL	Input logic low			1 UII				0.6	v	
I _{IH} , I _{IL}	Input leakage current	$V_{IN} = V_{CC}$ or 0		25°C	3.6 V	-250		250	nA	
ıH, ıL	input loanage ourient			Full	0.0 V	-250		250	11A	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 (2) All digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Floating digital inputs will cause excessive current consumption. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, SCBA004.

Electrical Characteristics for 3.3-V Supply (continued)

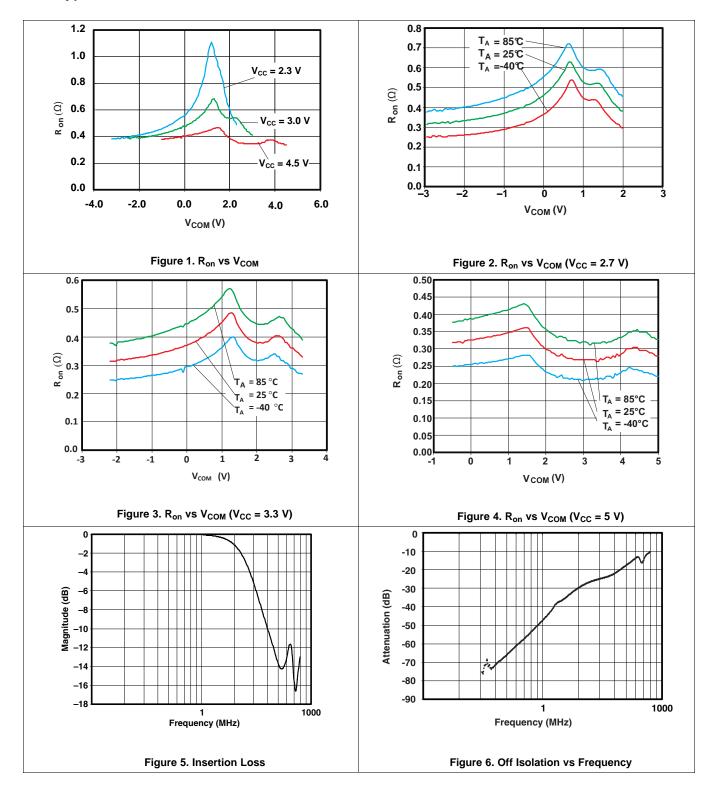
 V_{CC} = 3 V to 3.6 V, T_{A} = –40°C to 85°C (unless otherwise noted) $^{(1)}$

	PARAMETER	TEST CONE	DITIONS	TA	Vcc	MIN	TYP	MAX	UNIT
DYNAMIC									
			0 25 5	25°C	3.3 V		34	80	
t _{ON}	Turnon time		C _L = 35 pF, see Figure 17	Full	3 V to 3.6 V			120	ns
			0 25 5	25°C	3.3 V		19	70	
t _{OFF}	Turnoff time	$V_{COM} = V_{CC},$ $R_{L} = 300 \ \Omega,$	C _L = 35 pF, see Figure 17	Full	3 V to 3.6 V			70	ns
t _{BBM}	Break-before-make time	See Figure 18		25°C	3.3 V	1	7		ns
Q _C	Charge injection	$V_{GEN} = 0,$ R _{GEN} = 0,	C _L = 1 nF, see Figure 22	25°C	3.3 V		300		рС
C _{COM(ON)}	NC, NO, COM ON capacitance	$V_{COM} = V_{CC}$ or GND, f = 10 MHz	See Figure 16	25°C	3.3 V		370		pF
Cı	Digital input capacitance	$V_{IN} = V_{CC}$ or GND	See Figure 16	25°C	3.3 V		2.6		pF
BW	Bandwidth	$R_L = 50 \Omega, -3 dB$	Switch ON,	25°C	3.3 V		17.5		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega,$	f = 100 kHz, see Figure 20	25°C	3.3 V		-68		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$,	f = 100 kHz, see Figure 21	25°C	3.3 V		-76		dB
THD	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 35 pF,$	f = 20 Hz to 20 kHz, see Figure 23	25°C	3.3 V		0.008%		
SUPPLY									
		V_{COM} and $V_{IN} = V_{CC}$ or GND	,	25°C	3.6 V		0.1	1.2	۸
	Positive	V_{NC} and V_{NO} = Floating		Full	3.0 V			1.3	μA
I _{CC}	supply current	$\begin{split} V_{COM} &= V_{CC} - 5.5 \text{ V}, \\ V_{IN} &= V_{CC} \text{ or GND}, \\ V_{NC} \text{ and } V_{NO} = \text{Floating} \end{split}$		Full	3.6 V			3.4	μΑ

STRUMENTS

EXAS

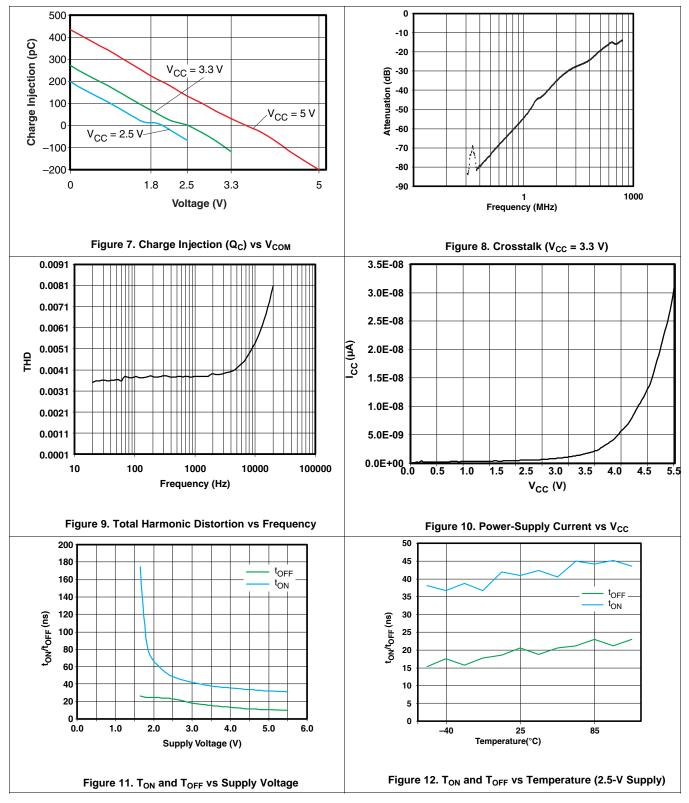
6.7 Electrical Characteristics for 5-V Supply


 V_{CC} = 4.5 V to 5.5 V, T_A = -40°C to 85°C (unless otherwise noted) ⁽¹⁾

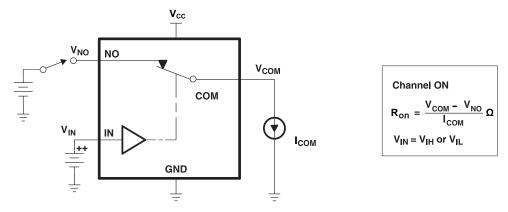
P/	ARAMETER	TEST CON	DITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT
ANALOG S	WITCH	1			11				
V _{COM} , V _{NO} , V _{NC}	Analog signal range					V _{CC} - 5.5		V _{CC}	V
R _{on}	ON-state resistance	$V_{NC} \text{ or } V_{NO} = V_{CC}, 1.6 \text{ V}, V_{CC} = -5.5 \text{ V}, I_{COM} = -100 \text{ mA},$	COM to NO or NC, see Figure 13	25°C Full	4.5 V		0.52	0.74 0.83	Ω
∆R _{on}	ON-state resistance match	$V_{NC} \text{ or } V_{NO} = 1.6 \text{ V},$ $I_{COM} = -100 \text{ mA},$	COM to NO or NC, see Figure 13	25°C Full	4.5 V		0.04	0.23	Ω
R _{on(flat)}	between channels ON-state resistance flatness	$V_{NC} \text{ or } V_{NO} = V_{CC}, 1.6 \text{ V},$ $V_{CC} = -5.5 \text{ V},$ $I_{COM} = -100 \text{ mA},$	COM to NO or NC, see Figure 13	25°C Full	4.5 V		0.076	0.30	Ω
R _{SH}	Shunt switch resistance	$I_{NO} \text{ or } I_{NC} = 10 \text{ mA}$		Full	4.5 V		16	36	Ω
I _{COM(ON)}	COM ON leakage current	$V_{\rm NC}$ and $V_{\rm NO}$ = Open, $V_{\rm COM}$ = $V_{\rm CC}, ~V_{\rm CC}$ – 5.5 V,	See Figure 15	25°C Full	5.5 V	-50 -375		50 375	nA
DIGITAL CO	ONTROL INPUTS (IN)	(2)			11				
V _{IH}	Input logic high			Full		2.4		5.5	V
V _{IL}	Input logic low			25°C		-250		0.8 250	
I _{IH} , I _{IL}	Input leakage current	$V_{IN} = V_{CC} \text{ or } 0$		Full	5.5 V	-250		250	nA
DYNAMIC		·							
tou	Turnon time	$V_{COM} = V_{CC},$ $R_{L} = 300 \ \Omega,$	C _L = 35 pF, see Figure 17	25°C	5 V		27	80	ns
t _{ON}				Full	4.5 V to 5.5 V			80	
	Turnoff time	$\label{eq:V_COM} \begin{split} V_{\text{COM}} &= V_{\text{CC}}, \\ R_{\text{L}} &= 300 \ \Omega, \end{split}$	C _L = 35 pF,	25°C	5 V		13	70	
t _{OFF}			see Figure 17	Full	4.5 V to 5.5 V			70	ns
t _{BBM}	Break-before- make time	$\label{eq:VNC} \begin{split} V_{NC} &= V_{NO} = V_{CC}/2 \\ R_L &= 300 \ \Omega, \end{split}$	C _L = 35 pF,	25°C	5 V	1	3.5		ns
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, see Figure 22	25°C	5 V		500		pC
C _{COM(ON)}	NC, NO, COM ON capacitance	$V_{COM} = V_{CC}$ or GND,	See Figure 16	25°C	5 V		370		pF
Cı	Digital input capacitance	$V_{IN} = V_{CC}$ or GND	See Figure 16	25°C	5 V		2.6		pF
BW	Bandwidth	$R_L = 50 \Omega$,		25°C	5 V		18.3		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega$,	f = 100 kHz, see Figure 20	25°C	5 V		-70		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$,	f = 100 kHz, see Figure 21	25°C	5 V		-78		dB
THD	Total harmonic distortion	$ \begin{array}{l} R_{L} = 600 \ \Omega, \\ C_{L} = 35 \ pF, \end{array} $	f = 20 Hz to 20 kHz, see Figure 23	25°C	5 V		0.009%		
SUPPLY									
		V_{COM} and $V_{IN} = V_{CC}$ or GND	25°C			0.2	1.3	ł	
I _{CC}	Positive supply current	V_{NC} and V_{NO} = Floating $V_{COM} = V_{CC} - 5.5$, $V_{IN} = V_{CC}$ or GND, V_{NC} and V_{NO} = Floating		Full	5.5 V			3.5 5	μΑ

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum (2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Floating digital inputs will cause excessive current consumption. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

6.8 **Typical Characteristics**



TS5A22364 SCDS261H – MARCH 2008 – REVISED JUNE 2017


www.ti.com

Typical Characteristics (continued)

7 Parameter Measurement Information

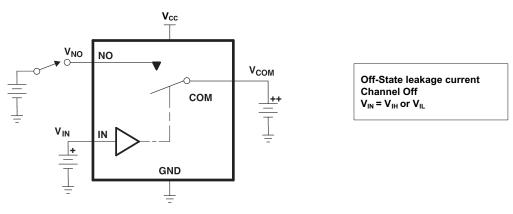
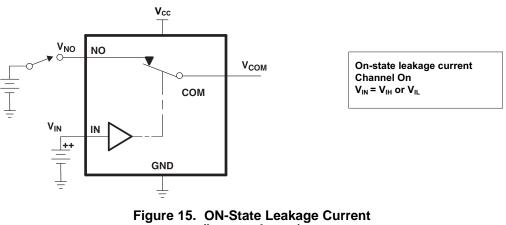
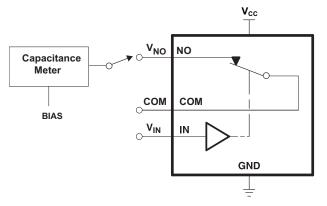
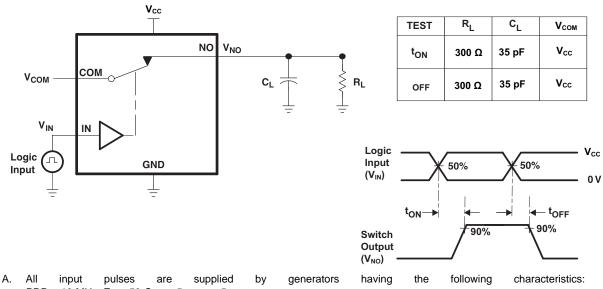



Figure 14. OFF-State Leakage Current (I_{COM(OFF)}, I_{NO(OFF)})



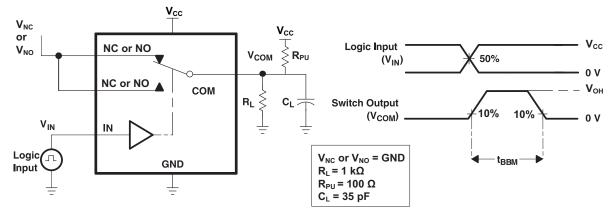
(I_{COM(ON)}, I_{NO(ON)})

TEXAS INSTRUMENTS


www.ti.com

 $\begin{array}{l} V_{\text{BIAS}} = V_{\text{CC}} \text{ or GND and} \\ V_{\text{IN}} = V_{\text{IH}} \text{ or } V_{\text{IL}} \\ \text{Capacitance is measured at NO,} \\ \text{COM, and IN inputs during ON} \\ \text{and OFF conditions.} \end{array}$

Figure 16. Capacitance (C_I, C_{COM(OFF)}, C_{COM(ON)}, C_{NO(OFF)}, C_{NO(ON)})



PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns. B. C_L includes probe and jig capacitance.

Figure 17. Turnon (t_{ON}) and Turnoff Time (t_{OFF})

- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns. t_f < 5 ns.

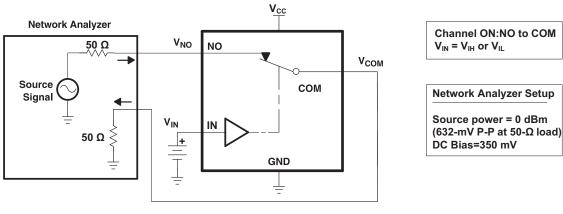


Figure 19. Bandwidth (BW)

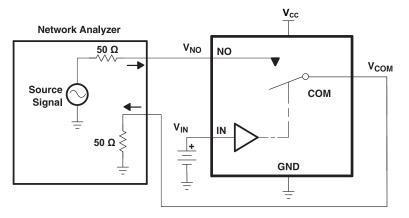


Figure 20. OFF Isolation (O_{ISO})

Channel OFF: NO to COM

<u>NetworkAnalyzerSetup</u> Source power = 0 dBm (632-mV P-P at 50-Ω load)

DC bias = 350 mV

 $V_{IN} = V_{IH} \text{ or } V_{IL}$

TEXAS INSTRUMENTS www.ti.com

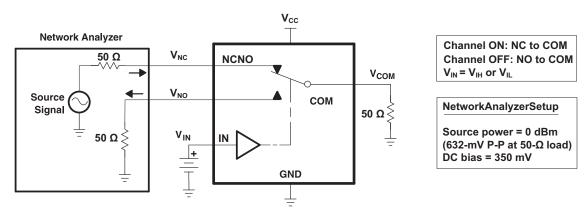
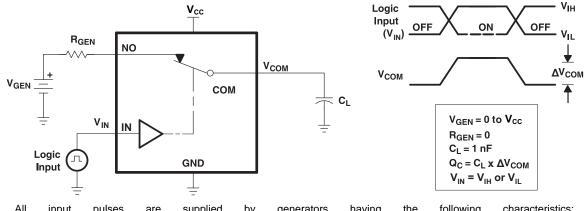
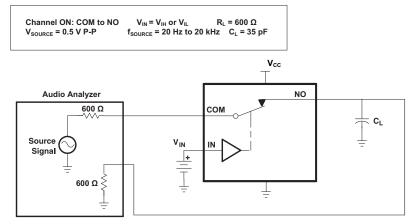
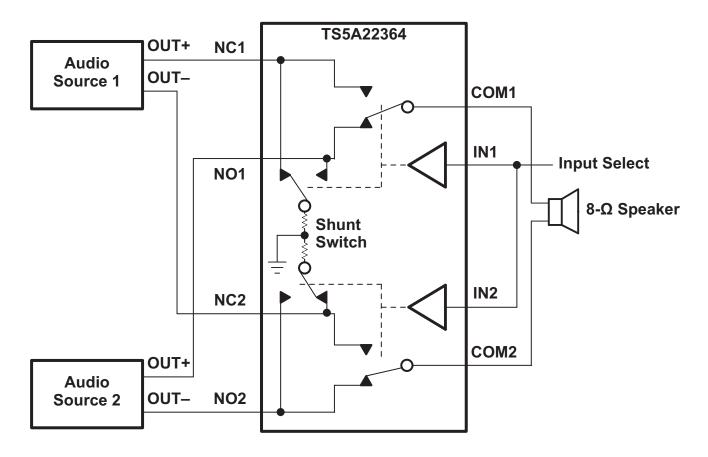




Figure 21. Crosstalk (X_{TALK})

- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- B. C_L includes probe and jig capacitance.

Figure 22. Charge Injection (Q_C)

C_L includes probe and jig capacitance.



8 Detailed Description

8.1 Overview

The TS5A22364 is a bidirectional 2-channel, single-pole, double-throw (SPDT) analog switch designed to operate from 2.3-V to 5.5-V power supply. The device features negative signal swing capability that allows signals below ground to pass through the switch without distortion. Additionally, the TS5A22364 includes an internal shunt switch, which automatically discharges any capacitance at the NC or NO terminals when they are not connected to COM. Discharging the capacitance reduces the audible click and pop noise when switching between two sources. The break-before-make feature prevents signal distortion during the transferring of a signal from one path to another. Low ON-state resistance, excellent channel-to-channel ON-state resistance matching, and minimal total harmonic distortion (THD) performance are ideal for audio applications.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Click and Pop Reduction

The shunt resistors in the TS5A22364 automatically discharge any capacitance at the NC or NO terminals when they are not connected to COM. This reduces the audible click-and-pop sounds that occur when switching between audio sources. Audible clicks and pops are caused when a step DC voltage is switched into the speaker. By automatically discharging the side that is not connected, any residual DC voltage is removed, thereby reducing the clicks and pops.

8.3.2 Negative Signal Swing Capability

The TS5A22364 2-channel SPDT switch features negative signal capability that allows signals below ground to pass through without distortion. These analog switches operate from a single 2.3-V to 5.5-V supply. The input and output signal swing of the device is dependant of the supply voltage V_{CC} . The device passes signals as high as V_{CC} and as low as $V_{CC} - 5.5$ V, including signals below ground with minimal distortion. The OFF state signal path (either NC or NO) during the operation of TS5A22364 cannot handle negative DC voltage

Table 1 shows the input/output signal swing the user can get with different supply voltages.

SUPPLY VOLTAGE, V _{CC}	$\begin{array}{l} \text{MINIMUM} \\ \text{V}_{\text{NC}}, \text{V}_{\text{NO}}, \text{V}_{\text{COM}} = \text{V}_{\text{CC}} - 5.5 \text{ V} \end{array}$	MAXIMUM V _{NC} , V _{NO} , V _{COM} = V _{CC}							
	ON-STATE SIGNAL PATH								
5.5 V	0 V	5.5 V							
4.5 V	–1.0 V	4.5 V							
3.6 V	–1.9 V	3.6 V							
3.0 V	–2.5 V	3.0 V							
2.7 V	–2.8 V	2.7 V							
2.3 V	-3.2 V	2.3 V							

Table 1. Input/Output Signal Swing

8.4 Device Functional Modes

The function table for TS5A22364 is shown in Table 2.

Table 2. Function Table

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
Н	OFF	ON

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The shunt resistors on the TS5A22364 automatically discharge any capacitance at the NC or NO terminals when they are not connected to COM. This reduces audible click-and-pop sounds that occur when switching between audio sources. Audible clicks and pops are caused when a step DC voltage is switched into the speaker. By automatically discharging the side that is not connected, any residual DC voltage is removed, thereby reducing the clicks and pops.

9.2 Typical Application

The shunt resistors on the TS5A22364 are designed to automatically discharge any residual charge at the NC or NO terminals when they are not connected to COM. This reduces audible click-and-pop sounds that occur when switching between audio sources. Audible clicks and pops are caused when a step DC voltage is switched into the speaker. By automatically discharging the side that is not used for the signal path, any residual charge voltage is discharged to ground, thereby reducing the clicks and pops. The amount of power that the shunt switch can discharge from the inactive signal path is limited by the shunt resistors (Rsh) power dissipation. TI recommends that during operation, the current through the shunt path should be limited to ± 10 mA.

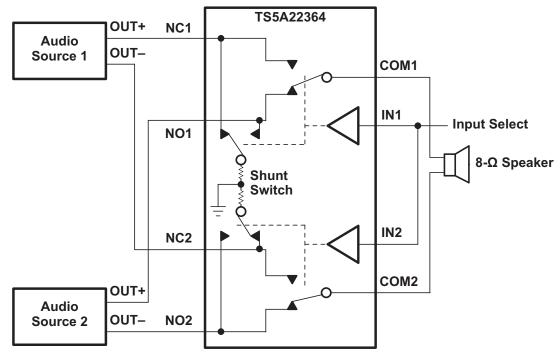


Figure 24. Shunt Switch (TS5A22364)

Typical Application (continued)

9.2.1 Design Requirements

Tie the digitally controlled inputs select pins IN1 and IN2 to V_{CC} or GND to avoid unwanted switch states and high current consumption that could result if the logic control pins are left floating.

9.2.2 Detailed Design Procedure

Select the appropriate supply voltage to cover the entire voltage swing of the signal passing through the switch because the TS5A22364 operates from a single 2.3-V to 5.5-V supply and the input and output signal swing of the device is dependant of the supply voltage, V_{CC} . The device will pass signals as high as V_{CC} and as low as $V_{CC} - 5.5$ V. Use Table 1 as a guide for selecting supply voltage based on the signal passing through the ON-state switch path.

Ensure that the device is powered up with a valid supply voltage on VCC before a voltage can be applied to the signal paths NC and NO.

9.2.3 Application Curve

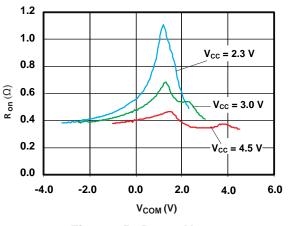


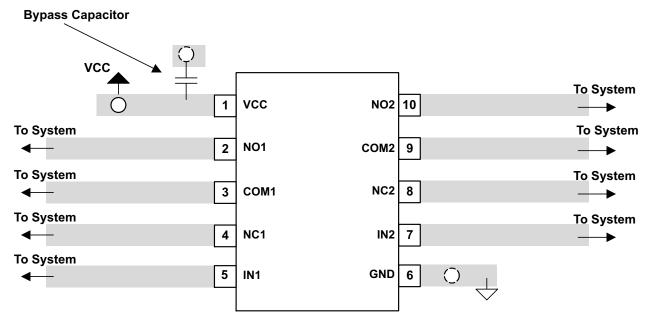
Figure 25. R_{on} vs V_{COM}

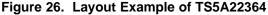
10 Power Supply Recommendations

The TS5A22364 operates from a single 2.3-V to 5.5-V supply. The device must be powered up with a supply voltage on VCC before a voltage can be applied to the signal paths NC and NO. TI recommends to include a 100- μ s delay after VCC is at voltage before applying a signal on NC and NO paths

It is also good practice to place a 0.1-µF bypass capacitor on the supply pin VCC to GND to smooth out lower frequency noise to provide better load regulation across the frequency spectrum.

11 Layout


11.1 Layout Guidelines


TI recommends placing a bypass capacitor as close to the supply pin VCC as possible to help smooth out lower frequency noise to provide better load regulation across the frequency spectrum.

Minimize trace lengths and vias on the signal paths in order to preserve signal integrity.

11.2 Layout Example

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

19-Jun-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	-	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TS5A22364DGSR	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(38Q ~ 38R)	Samples
TS5A22364DGSRG4	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(38Q ~ 38R)	Samples
TS5A22364DRCR	ACTIVE	VSON	DRC	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ZVF	Samples
TS5A22364YZPR	ACTIVE	DSBGA	YZP	10	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(38 ~ 382)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

19-Jun-2017

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

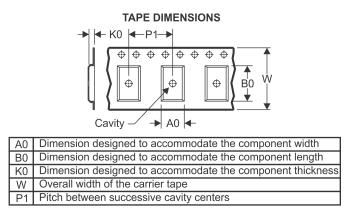
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TS5A22364 :

• Automotive: TS5A22364-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

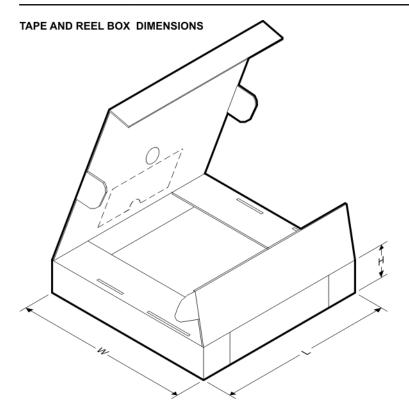

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

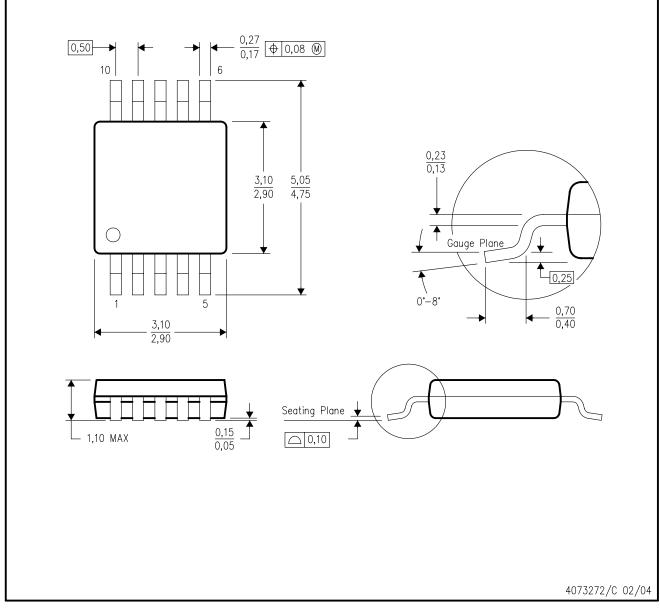

*	All dimensions are nominal												
	Device	•	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	TS5A22364DGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
	TS5A22364DRCR	VSON	DRC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
	TS5A22364YZPR	DSBGA	YZP	10	3000	178.0	9.2	1.49	1.99	0.63	4.0	8.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

3-Aug-2017

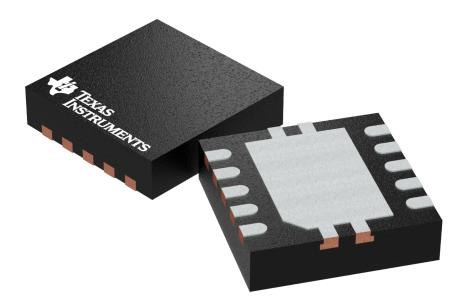


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A22364DGSR	VSSOP	DGS	10	2500	358.0	335.0	35.0
TS5A22364DRCR	VSON	DRC	10	3000	367.0	367.0	35.0
TS5A22364YZPR	DSBGA	YZP	10	3000	220.0	220.0	35.0

DGS (S-PDSO-G10)

PLASTIC SMALL-OUTLINE PACKAGE

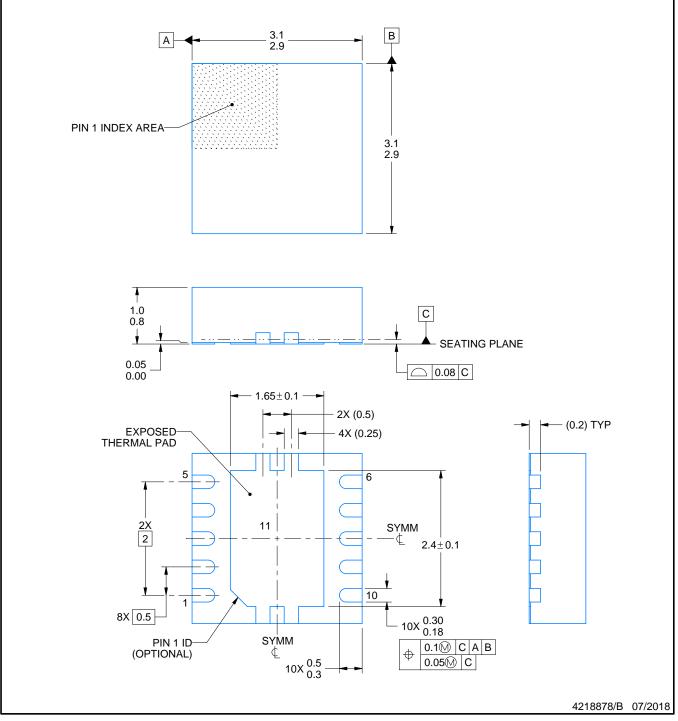

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation BA.

GENERIC PACKAGE VIEW

VSON - 1 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DRC0010J

PACKAGE OUTLINE

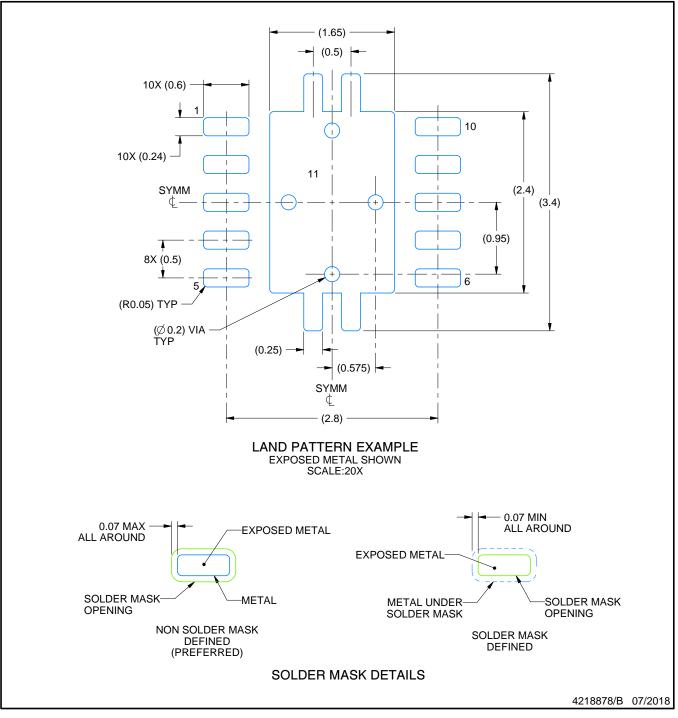
VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.

3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.



DRC0010J

EXAMPLE BOARD LAYOUT

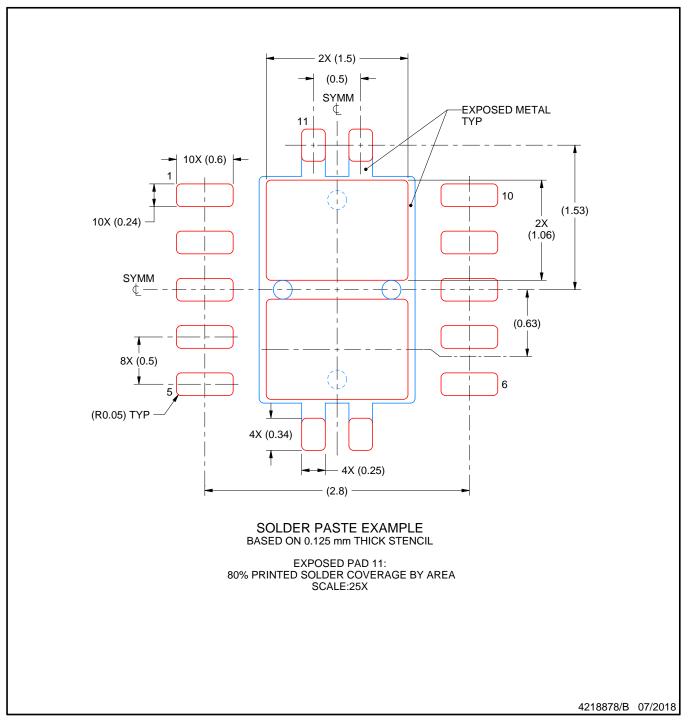
VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



DRC0010J

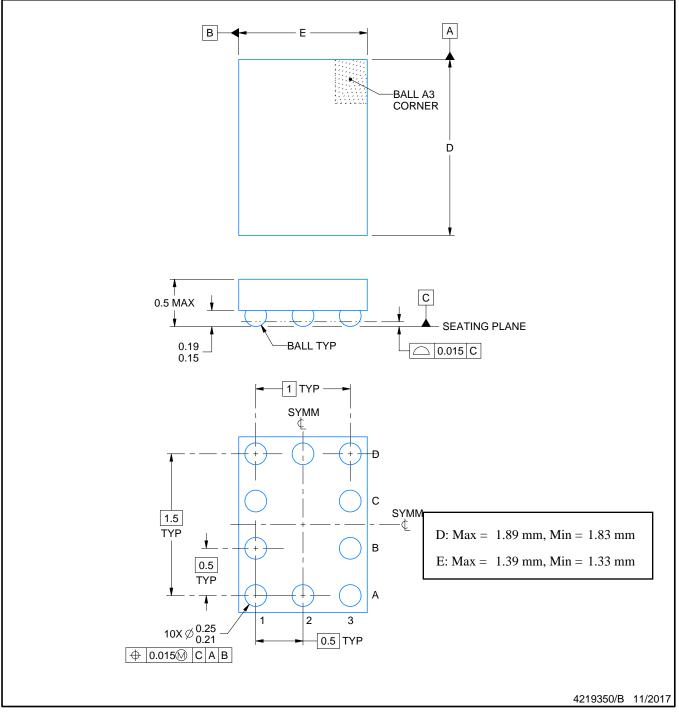
EXAMPLE STENCIL DESIGN

VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


YZP0010

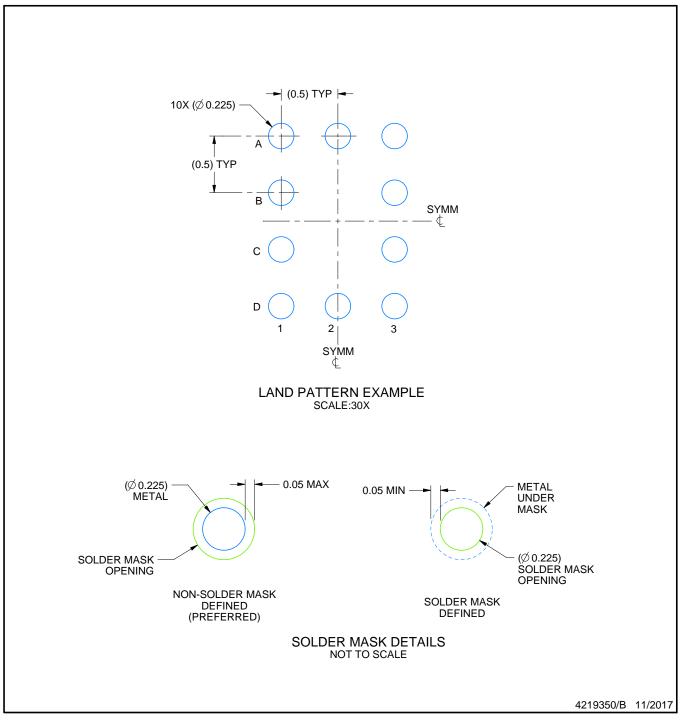
PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.



YZP0010

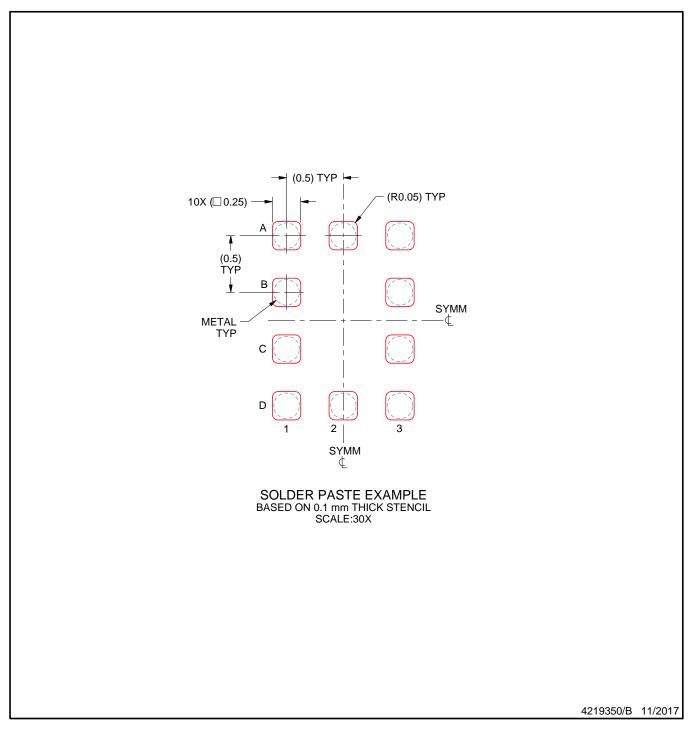
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).



YZP0010

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated